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Whereas initial-value ODES have been routinely solved to date using robust geueral- 
purpose packages, for boundary-value problems many researchers currently write their 
own special-purpose codes, often based on special-purpose methods. This painful, time-. 
consuming, and error-prone process can and should be avoided in all but the ~oughnt aud 
most peculiar cases. In this paper we use a general-purpose code, developed with our col- 
leagues, to solve reliably, accurately, and cfficicntly five problems in scicncc and cnginccring 
which display a variety of numerical difficulties. The code is based on spline-collocation ai 
Gaussian points and is capable of handling nonlinear mixed-order systems of multipoin: 
boundary-value ODES. It products reliable error cstimatcs and has been found particular!y 
useful for difficult problems. Here we demonstrate its power and applicability. 

Many researchers currently seem to feel the need to write their own special-purpose 
codes, often based on special-purpose numerical methods, to solve particular 
boundary-value diKerentia1 equations (ODES) encountered in their work. ‘f‘his is in 
contrast to the situation with initial-value problems in ODES, where available general- 
purpose software is in common use. A good special-purpose implementation is 

usually a painful, time-consuming, and error-prone process, and if possibie should be 
avoided. The advance of robust boundary-value software has made it possible to soive 

all but the toughest and most peculiar problems using a general tool. 
Such a general purpose code, COLSYS [I, 2], is recommended and used here. The 

package is based on spline collocation at Gaussian points and is capable of handling 
nonlinear mixed-order systems of multipoint boundary-value ODES. Reliable error 
cstimatcs arc produced and adaptive mesh rciincmcnt is pcrformcd. The picccwise 
polynomial approximate solution is given in terms of a B-spline basis [3, 41, and the 
resulting sparse linear systems are solved efficiently [5]. For nonlinear problems, the 
damped Newton method is used Tar the first mesh, and modified Newton iterations 

with a fixed Jacobian are performed for subsequent refined meshes. 
In preliminary comparisons, COLSYS has been found to bc compctitivc with other 
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robust software for boundary-value ODEs [1,2]. It is particularly useful for difficult 
problems, including those containing thin layers and singular coefficients. Singular 
Jacobians, however, cannot be currently handled by the code. Also, a very large order 
of the differential system may cause excessive storage requirements. 

In this paper we use the code to solve a variety of problems in science and 
engineering, demonstrating its power and applicability. Following a short description 
of the numerical techniques used we present and discuss the solution of problems in 
semiconductor devices, vertical channel flow, shell buckling, optimal control of 
exhaustible resources, and elastic shell deformation. These problems give rise to a 
variety of numerical difficulties which are resolved here; e.g., steep interior and bound- 
ary layers in the solution, singularities, termination of a solution branch, and infinite 
intervals with slowly decaying solutions. 

We conclude that a robust, general-purpose code like COLSYS can be used success- 
fully for solving accurately, reliably, and efficiently the difficult boundary-value 
problems encountered in practice. 

2. PROBLEM DEFINITION AND NUMERICAL TECHNIQUES 

Consider a system of d nonlinear differential equations of orders 1 < m, < --- < 
md , 

u$J(x) = F,(x; z(u)) a < x < b, n = l,..., d, (1) 

where the sought solution n = (ul ,..., ud) is an isolated solution vector and z(u) = 
(Zl1 ) z4; ,,.., up+), Zig ,...) % >***, ujtnd-l)) is the vector of unknowns that would result 
from converting (1) to a first-order system. The system is subject to nz* = &, m, 
nonlinear multipoint separated boundary conditions 

git5i ; z(u)) = 0 j = l,..., n2*, (2) 

where <j is the location of the jth boundary (or side) condition, a < cl < 5, < -a- < 
5 m* + ’ b. 

The method of spline collocation at Gaussian points, or orthogonal collocation 
[6, 71, has been implemented in COLSYS to solve (l), (2). The problem is solved on a 
sequence of discrete meshes, until user-specified error tolerances are satisfied. For a 
specific mesh 57 : a = x1 < x2 < -*- < x~+~ = b, with hi = Xi+1 - xi, 11 = maxIsiGB 
II< ) and an integer k > md , the collocation solution v(x) = (ul ,..., ad) is a piecewise 
polynomial vector function: each v, E P+l[a, b] is a polynomial of degree less than 
k + ~2, on each subinterval (or element) (xi, xi+& n = l,..., d, i = l,..., N. This 
solution is determined by requiring that it satisfy the differential equations (1) at the 
images of the k zeros of the appropriate Legendre polynomial in each element. 

We now briefly describe the techniques for controlling the error and the nonlinear 
iteration in COLSYS. More complete descriptions can be found in [I, 21. 
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Provided that the problem (I), (2) is smooth enough, the error in v for x E [x.~ ) xII1) 
is given by 

I = 0, l,...) rlz, - 1, 12 = I,..., d, (3) 

where c,,~ are known bounded functions of X. This expression is used both for es& 
mating the error accurately via mesh halving to check against user-given tolerances 
and for mesh refinement. By approximating uL’+“m’(xi) using Y,(X), a rough estimate 
for the error in each subinterval is obtained. If considered worthwhile, a redistribution 
of the mesh points is performed to equidistribute the error (i.e., have approximately 
the same magnitude of error in each element) and U(X) is recomputed. If not, each 
element is halved, a new solution U*(X) is computed, and the error in V*(X) is estimated 
using V(X), U*(X) and (3). The decision whether to redistribute the mesh points or not, 
as well as an estimate of the desired mesh size, are made automatically by COLSYS. 

For nonlinear problems, two modifications of Newton’s method are used. Using 
quasi-linearization, at each iteration a linearized problem is solved by collocation as 
described above. At the first mesh, for which frequently no adequate initial approxima- 
tion is available, the damped Newton method is used witb the damping or relaxation 
factor being controlled by a modified scheme originally due to ~e~hard [g]. For 
further meshes (provided previous convergence has been obtained) ihe converged 
solution on the previous mesh serves as an excellent initial approximation, and fast 
Newton iterations with the Jacobian held fixed are performed as iong as the residual 
monotonically decreases at a sufficiently rapid rate. 

To use COLSYS, the user must specify a set of tolerances toIj and pointers IMj ~, 
; = I,..., ntof. The (successful) stopping criterion is that J 

where, for any appropriate function 4, 

is being evaluated approximately. The reliability of the error-estimating procedure 
being used for the stopping criterion has been verified elsewhere [l, 21. 

3. PROBLEMS AND SOLUTIONS 

The following notation is used in the presentation here. 

toi = Combined error tolerance for the component z$!(xj of the solution. 
(COLSYS allows the user to specify different tolerances for different 
components, and the mesh selection algorithm considers only these 
components for which tolerances are specified,) 
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time = Actual solution time in seconds. 
a & b = a - IO*b. 
k = Number of collocation points per subinterval. 

We = Successive mesh sizes, i.e., numbers N of elements (subintervals) required, 
optionally followed in parenthesis by the number of full Newton iterations 
performed on each mesh for nonlinear problems. 

The initial meshes are uniform unless otherwise stated. In the case of continuation, 
i.e., using a formerly obtained solution for the initial approximation of another 
problem, the new mesh is twice as coarse as the mesh on which this initial approxima- 
tion is defined. 

All the computations reported here were carried out on the Amdahl V/6-11 computer 
at the University of British Columbia, using the IBM Fortran H compiler with double 
precision (14 hexadecimal digits). 

PROBLEM 1. The following singularly perturbed system with singularities in the 
boundary conditions describes the contact of two semiconductors with different types 
of conductance [9]: 

Ey’ = ,x1 - x2 + K (6) 

x; = x1y - c, (7) 

x; zzz --x,y + c, (8) 

Xl(O) = x,(O), Xl(l) = 0, x2(1) = K. (9) 

y-Electric field strength; x,-hole density; x,-electron density; K, c are given constants 
(we take K = c = 1.0). The parameter E is a small positive constant: E N (J/Q2, 
where L is a characteristic dimension of the system and I is a characteristic dimension 
of the space charge region. See [9] and references therein for asymptotic analysis, 
physical interpretation, and the approximate solution computed for 6 = 10-3. The 
solution components have a boundary layer at 0 with y(0) h --&ln. 

We use this as a model to examine the performance of the code on a mildly difficult 
boundary layer problem. We have computed the solution for E = IO-“, p = 3,4,..., 
10, with k = 5 and tolj = lo-“, j = 1, 2, 3. For p = 3, 4, and 5 the initial solution 
was y = x1 = 0, x2 E K with a uniform initial mesh of 10 subintervals. For p 3 6 
simple continuation was used with the initial solution for p being the final one for 
p - 1. Values of the solution at 0 are tabulated below together with the mesh se- 
quences. In the column entitled N-layer we list the number of elements inside the 
interval (0, IO@) for the last mesh encountered for each E. 

PROBLEM 2. Consider the problem of fluid injection through one side of a long 
vertical channel [lo]. The Navier-Stokes and the heat transfer equations can be 
reduced to the following system 
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TABLE I 
Problem 1 

f 

10-s 
X0-” 
10-S 
lo-” 

10-T 
10-s 

10-S 
~&IO 

;@I x,(Q) Time N N-Layer 

-0.21308 + 2 0.98833 1.6 10, 9, 18, 36 24. 
-0.69191 +2 0.99644 2.7 10, 10, 10, 20, 11, 22, 44 28 
-0.22060 + 3 0.99889 3.6 10,20,20, 16, 32, 16, 32 20 

-0.69938 + 3 0.99965 5.1 X6: 16, 16, 32, 22, 44, 22, 43, 22, 44 26 

-0.22134 + 4 0.99989 6.4 22, 22, 22, 44, 27, 54, 27, 54, 27, 54 32 
-CL70012 + 4 0.99996 3.7 27, 26, 52, 26, 52 2; 

-0.22142 + 5 0.99999 4.6 26, 26, 26, 52, 36, 72 20 
-0.70020 + 5 1.00000 5.2 36, 3j9 70, 42, 84 2; 

f” - R[(f’)” -ff”] + R - A = 0: 

h” + R * fh’ + 1 = 0, 

8” + P -j-8’ = Q, 

f(O) =f’W = 0, f(l) = 1, f’(l) = 0: 

h(0) = /z(l) = 0, 

O(0) = 0, e(1) = 1. 

IIeref and h are two potential functions, 19 is a temperature distribution funcrion, 
and A is an undetermined constant. V-Constant injection velocity, U-thickness of the 
channel, v-viscosity of the fluid, R = UV/v = crossflotv Reynolds number, F- 
Peclet number (we take P = 0.7R). See [lo] for details. 

In a typical manner, this problem is most efficiently solved by breaking it into three 
separate problems: 

I. Differentiating (10a) we obtain the fourth-order equation 

f “” = R[f If” - ff “J 

subject to (lla). 

II. The second-order hear problem (lob), (1 lb). 

III. The second-order linear problem (~OC), (1 lc). 

(42) 

The problems get numerically harder as Reynolds number R increases. In [lo] 
solutions for values of up to R = 25 were calculated. In Table II we summarize some 
computations for various values of R, performed without continuation. For larger si”, 
continuation should be used. We used k = 5 for problem I, k = 4 for problems II 
and III, and toi = 1OV on all components of z of (1). The initial solutions for each R 
weref = 0 and the initial meshes were all uniform of five elements. In Figs. 1 and 2, 
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TABLE II 
Problem 2 

Problem R Time NV) 

I 25 0.4 5(4), 10(l) 
II 25 0.2 5, 10, 20 

III 25 0.2 5, 10, 20 

I 100 0.8 5(5), 10(l), 7w, 14(l) 
II 100 0.3 5, 10, 8, 16 

III 100 0.4 5, 10,20, 11,22 
I 500 1.6 5(6), lo(l), 10(l), 8(l), 16(l), 32(l) 

II 500 0.5 5, 10, 8, 16, 32 

III 500 0.8 5, 10, 10, 20, 11, 22, 15, 30 
I 2000 2.7 5(7h 10(2!, 20(l), 17(l), 34(l), 17(l), 34(l) 

II 2000 0.5 5, 10, 20, 10, 20 

III 2000 0.6 5, 10, 10, 10,20, 13, 26 

I 10000” 3.9 5(9), 1om 20(l), 40(l), 20(l), 40(l), 20(l), 40(l) 

II 10000 0.8 5, 10, 20,20, 10, 20, 10,20 
III 10000 1.1 5, 10, 20, 20, 20, 40, 20, 40 

“For this value of R, tolcf”) was relaxed to avoid roundoff error difficulties. 

0.96 

f' 

0.64 

0.32 

0.0 1 \ 
I I I 1 

0.0 0.2 0.4 0.6 0.8 1.0 

X 

FIG. 1. Problem 2, tangential velocity. 
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x 
FIG. 2. Problem 2, temperature distribution. 

the curves for the tangential velocity f ’ and the temperature distribution 8 are plotte 
for various values of R. 

PROBLEM 3. The following system of equations arises in the study of the elastic 
stability of thin shallow spherical shells subject to uniform pressure: 

j” = -gg + fg - (3/x) f’ - 27, 

g” = jL2f - gi” - (3/x) g’, 
O<x<l, 

f’(0) = g’(0) = 0, f(1) = 0, g!(l) -1 $g(l) = 0. 

(13) 

(14) 

Here x is the normalized polar angle, f-normalized angular deflection, g-normalized 
stress, p2 = 144 = parameter characterizing the geometry of the shell, and r-load 
parameter (see [8] and references therein). 

As is typical for problems arising from a dimensional reduction frolm partial 
differential equations due to symmetry, this problem has singular coefficients, but 
smooth solution at the origin. Unlike shooting codes, CULSYS handles this situation 
without any modifications. A similar situation arises in problem 5. 

It is known for this problem that there exists a critical value 7c (buckling load) such 
that for 7 > r’c ) system (13), (14) has no solution. In [8] the following resnh was 
reached using a sophisticated multiple shooting code with an adaptive continuation 
strategy: 

19964.6 < 7c < 19971. :;hSj 

Using COLSYS we want to bracket -rc more accurately. We compute a chain of simpie 
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continuations, i.e., a sequence of solutions to problems with increasing r, using the 
solution of the 0’ - 1)st problem as the initial approximation for thejth one. 

With k = 4, tol(f) = tol(g) = lo-‘, the following continuation chain in r was 
obtained (for T = 0 the solution is trivial, f = g = 0): 

T: 0 ---f 19969.6 --+ 19969.62 + 19969.63. 

Each continuation step consumed about 2 sec. The last T was obtained at a relatively 
great effort, the last mesh size being N = 64. Attempts to increase 7 by 0.001 failed. 
Additional experiments, with additional tolerances on f’ and g’, lead us to conclude 
that 

TV = 19969.63 & 0.001. (16) 

PROBLEM 4. The following problem arises in the theory of the optimal use of an 
exhaustible two-grade resource: 

k = karb - By - c 7 
O,(t<q 

(1 - b) karb = c, 

et> = 4, O<t,(T, 

= Be, T<t<q 

k(O) = ko, I T r(t) = Dl, 
0 

Jm r(t) = Do. 
T 

(17) 

(1% 

(1% 

Here t is time; r-resource flow per head; k-capital stock per head; c-maximum sus- 
tainable constant consumption level; G-unit extraction cost; T-switching instance from 
low-cost to high-cost resource; and a, b, k, , & , B, , t$ , and 0% are known positive 
constants, 0 < a + b < 1, b < a, 8, < 8, . See [ll, 121 for full details and presenta- 
tion of the economic model. 

We demonstrate here how one can deal with an unknown switching point T (at 
which the coefficient 0 has a jump discontinuity) and with an infinite interval when 
a slowly decaying function r is present. In order to bring conditions (20) into the 
form of (2), define 

D(t) = li r(T) dT (20 

obtaining D(0) = 0, D(T) = & , D(co) = & + D, . Then we get 

cb -- 
k=l-b BD 

and this can be integrated, using the known values of k(0) and D(0) and continuity of 
k and D at t = T. Also, to handle the unknown switching point T, define x = t/T as 
the new independent variable for 0 < t < T and D, E D there. Moreover, for T < t 
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< co define D, = D and x = (Tit)", wherep is a constant chosen so thaty < (C - 6)/S 
(we take p = 4). The resulting problem to be solved is 

T' = 0, 

c+ = 0, 
O<x<l, 1’23) 

13; = T (&-)I” (A TX - l?,D, + k,)-U’Uy 

Note that, whereas in many cases integration on a finite interval [T, L) with i 

TABLE III 

Problem 4 

Case c T Time N(I) 

6 = 0.05, k, = 2.4 
B, = 10, li, = 50 
b = 0.1, k, = 2.4 
D, = 15, D? = 50 

b = 0.15, k, = 2.4 
D, = 10, D, = 50 

3 = 0.05, k, = 2.4 
a, = 10, D, = 25 

b = 0.1, k, = 2.4 
33, = 10, D, = 2.5 

b = 0.15, k, = 2.4 
Di = 10, D, = 25 

b = 0.05, k, = 2.4 
D1 = 25, Dz = 50 
b = 0.1, k, = 2,4 
D, = 25, D, = 50 
0 = 0.15, k, = 2.4 
D1 = 25, D? = 50 

b = 0.05, kc = 4.8 
D, = 10, Di, = 50 

b = O,l, k, = 4,8 
D1 = 10, B, == 50 

b = 0.15, k, = 4.8 
D, = 10, D, = 50 

1.1406 11.03 

I.1386 6.676 

1.0674 9.840 

1.1392 11.49 

1.1080 9.815 

0.98053 24.01 

1.1590 21.82 

1.1740 14.30 

1.1128 27.92 

1.3036 11.33 

1.2675 8.984 

1.1222 18.11 

1.8 

:.0 

0.6 

1.0 

0.6 

0.6 

1.8 

0.5 

0.6 

i.9 

0.6 

0.6 

5461, 10, 2-3: IO, 20 

5(4), 10, 20 

5!4j, LO 

5(4j? 40, 20 

5(4j, 10 

5(5j, 10. 

5463, 10, 20, 10, 20 

5(3), 10 

5i5), 10 

X5), iCl > 20. - 40 

5(4), 10 

5(4)> IO 

a One Newton iteration was needed for any mesh but the first in each case. 
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reasonably large is sufficiently accurate to replace integration on the infinite interval 
[T, co), here very large L are insufficient (for a = 0.2 and b = 0.15, L = 0.5 + 7 is 
not large enough for three digits in T) because r(t) decreases slowly as t increases; viz, 
for t large, k(t) increases like a straight line and I’ N k-“ib. 

Various results are accumulated in Table III. In all cases we took a = 0.2, 0X = 0.03, 
8, = 0.09, k = 4, and tolj = 10-5,j = l,..., 4. The initial approximation was T = 10, 
c = 1.2, and a linear interpolation of the boundary conditions for D, , D, . Note 
the relative insensitivity of the maintainable consumption level c to changes in the 
resource endowment Dl, D, . c is a little more sensitive to changes in the initial stock 
of capital k, . Note also that our transformation for D, does better for the case where 
b = 0.1 or b = 0.15 than where b = 0.05, even though the latter case is easier in the 
sense that r(t) decays faster. The singular coefficient introduced by this transforma- 
tion causes no problem to COLSYS. 

PROBLEM 5. Consider a homogeneous, isotropic, spherical shell of constant 
thickness h and middle surface radius a, subject only to an axisymmetric normal 
distributed surface load P&), where f is the angle between the meridional tangent at 
a point of the midsurface of the undeformed shell and the base plane [13]. The gover- 
ning equations for the finite deformation elastostatics of the shell are given in dimen- 
sionless form by 

p[yY + cot cg’ + (v - cot’ 0 #I - & (cos p - cos 0 

= p 
( 
VP' + (1 + v) cot [P - sm (sin” &+J - v cos &H), . l (25) 

( 
cos B 8/p 4” + cot &’ + sin” (sin /I - sin f) 

- L& (cos p - cos 6)) + JE& * = zg P. (26) 

Here # is a stress function; $-the meridional angle change of the deformed middle 
surface; /?(= f - $)-th e meridional angle of the deformed middle surface; Pi- 
representative magnitude of the inward portion of P&); E-Young’s modulus; 
v-Poisson’s ratio; p = pia/( E* = h”/(12(1 - v") a2); pa = -Pzl sin p/Pi ; P = 
- J’ Pn[Pi cos p sin 7 dq. 

Following [13] we now consider polar dimpling of a complete spherical shell under 
a particular load distribution of the form 

P&) = Pi(l - 8 sin c) (27) 

6 > 1. This gives 

P=-J5(1-8 sin q) cos p sin r] dq, pH = - sin p(1 - 6 sin f) (28) 
0 
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and by symmetry it suffices to consider the hemisphere 5 < t < n/2 under the bound- 
ary conditions 

4(O) = #(O) = #(n-/2) = z&T/2) = 0. (29) 

To evaluate P, Wan [13] used the approximation cos /3 .e cos [. Here we add 
another differential equation and boundary condition 

P’ = -(1 - 6 sin E) 60s /3 sin t, P(0) = 0. (3Oj 

The computations for system (25), (26), (29) (35) confirm those in 1131, which were 
performed using COLSYS as well. In Fig. 3 we plot curves of ,B for various values of 
E and ,u. Numerically, the existence of a dimple means an interior layer in p, around 
which many mesh elements have to be concentrated for an accurate approximation to 
this difficult problem. This is done automatically by the code. With k = 4 and to! = 
15-j on all five components of z, chains of continuations in (p, 6) were constructed, 
starting with z = 5 and a uniform mesh of N = 8 for (p, ej = (5.3,5.3). 

In Table IV we list four such chains. In the column entitled “hr” the final mesh siza 

for each run is listed. For the chains ends we also list, under “layer,” an interval 
containing the thin layer in /3 and under “M-Layer,” the number of elements of the 
last mesh inside that interval. Chains 2, 3, and 4 are each started where chain. 1 ends. 
All these produce solutions with a dimple in the elastic shell, corresponding to a 
transition layer in p. The small continuation steps for p = 0.5051, E = 0.01 were 
needed because the layer moves to the left, necessitating drastic mesh adaptation. 
Also for 1-i = 0.0501, E = 0.01, a second solution branch with no dimple is produce 
from the initial approximation z = 0. 

X 

FIG. 3. Problem 5, deformed meridional angle. 
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TABLE IV 

Problem 5 

Chain P E N Layer N-Layer 

1 0.3 
0.1 
0.05 
0.01 

2 0.01 
0.003 
0.001 

3 0.01 
0.01 
0.01 

4 0.01 0.01 64 
0.005 0.01 64 
0,002 0.01 64 
0.001 0.01 64 
0.0005 0.01 110 
0.0002 0.01 110 
0.00015 0.01 110 
0.0001 0.01 110 (0.73, 0.93) 72 

0.3 
0.1 
0.05 
0.01 

0.01 
0.003 
0.001 

0.01 64 
0.001 52 
0.0001 104 (0.80, 0.91) 58 

16 
32 
32 
64 (0.79, 0.91) 33 

64 
108 
72 (0.82, 0.87) 53 
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